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A Separable Goal Programming Approach to
Optimizing Multivariate Sampling Designs
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AssTRacT. Describes the application of a separable goal programming approach to stratified
random sampling involving multiple objectives. Other attempts at solving this problem are also
reviewed. The method is applied to a forest inventory problem in New Mexico involving six
objectives and fourteen strata. Eight sampling allocations are presented to illustrate the sensitivity
to alternate preference functions. Intercorrelations among goal criteria limit the effects of alter-
native preferences on resulting sampling allocations. All sampling allocations are guaranteed to
be nondominated—something that goal programming does not (in general) provide. FOREST ScI.
27:147-162.
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IN RECENT YEARS, interest in applying formal decisionmaking techniques to forest
inventory has grown (Burkhart and others 1978, Hamilton 1979). As the costs of
forest inventory have risen, ‘‘cost-effective’” has become a common phrase of
inventory designers (Ware 1974, Avery 1974, O’Regan and Arvanitis 1966).

The dual objective of the inventory specialist is to provide valuable information
for management at low cost. The means of accomplishing this task is the selection
of suitable sampling and estimation procedures for the particular problem at hand.
The designer must exploit his knowledge of the intended use of the information,
the statistical characteristics of the population(s), and the technical and financial
attributes of alternative sampling plans (Ware 1974).

I[n order to use optimization methods to solve the sampling'allocation problem,
forest managers must quantify their information goals in terms of cost and pre-
cision of sample estimates. In addition, the appropriate loss function involving
these goals must be specified either explicitly as a mathematical function or im-
plicitly by preferences between alternative sampling designs. With this quanti-
tative framework, the inventory specialist can help the manager select the most
cost-effective sampling plan.

In this paper a technique is presented for selecting an allocation of inventory
resources for a stratified random sampling (SRS} design when faced with multiple
goals. The method is applied to data from a U.S. Forest Service inventory in
northern New Mexico.!

' USDA Forest Service. 1975. Operating Plan for the forest resource inventory of selected counties
in northern New Mexico. Unpublished report, USDA Forest Service, Intermountain Forest and
Range Exp Stn, Ogden, Utah.

The authors are Graduate research assistant and Associate Professor, respectively, College of Forest
Resources, University of Washington, Seattle, WA 98195. Manuscript received 4 September 1979 and
in revised form 4 August 1980.
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THE STRATIFIED RANDOM SAMPLING PROBLEM

Stratified random sampling (SRS) is a commonly used design for obtaining esti-
mates of population characteristics because: (a) separate estimates of the means
and variances can be made for each of the forest strata, and (b) for a given
sampling intensity, stratification often yields more precise estimates of the forest
characteristics than does a simple random sample of the same size. This will be
achieved if the sampling variance for a characteristic is significantly lower within
the established strata than within the population as a whole. The main disadvan-
tage of stratification is that stratum sizes must be known or fairly accurately
estimated if the gain in precision is to be realized (Husch and others 1972).

Stratification is most efficient when strata definitions are based on the char-
acteristic which is to be estimated by the sampling procedure. In a multivariate
inventory. the designer would ideally form a different set of strata for each char-
acteristic to be estimated. In practice, cost considerations often limit the basis
for stratification to information available from aerial photographs. Since some
population characteristics cannot be estimated very well from photos (i.e.. growth
rates) optimal stratification with respect to these characteristics is infeasible. As
a compromise, stand types are often used to delineate strata because they form
logical management units, _

For simplification it will be assumed that all characteristics are measured on
each sampling unit selected from the population. This is reasonable if the marginal
cost of measuring additional characteristics is low compared to the cost of plot
establishment. Extension to the case of differing sampling intensities is straight-
forward. However. this increases the size of the allocation problem as a function
of the number of population characteristics being estimated.

For SRS in which stratum sizes are known an unbiased estimate of the popu-
lation mean for a characteristic is

15
vy = E Nyn! N (n
h=1
with variance (Cochran 1963),
L
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W, = N,/N = Proportion of population sampling units in At stratum
S,* = Estimate of variance of y in A" stratum
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L = Number of strata.

=
o
I

To develop a cost-effective allocation one must assume a cost function. In
this paper only the linear cost function

f. ’
C = C” + Z Cptly, (3)

h=i

will be used. C, represents fixed costs and ¢, is the cost per sampling unit taken
from the /" stratum. Variable travel costs between sampling units are assumed
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negligible. While less than realistic. the linear cost function is adopted for sim-
plicity and comparability with previous work (Chatterjee 1968, Hartley 1965,
Arvanitis and Afonja [971). Extension to more complex cost functions is dis-
cussed later.

With these assumptions, the SRS problem is one of deciding how many sam-
pling units to take from each stratum. The criteria to be considered in selecting
a set of sample sizes are sampling costs (C) and the variances of the sample
estimates (set of V(¥)'s). For each criterion there is a corresponding objective
(goal) such as minimization of each V(¥) and C. The inventory designer seeks to
maximize the decisionmaker's satisfaction (minimize his loss function) through
a compromise among these conflicting multiple objectives.

SoLVING MULTIPLE OBJECTIVE OPTIMIZATION PROBLEMS

The traditional approach to optimization grew out of the neoclassical theory of
the firm where a single objective, maximization of profit, was assumed to be a
comprehensive measure of utility (Keen 1977). This simplification allowed the
development and application of a wide range of mathematical techniques to the
problem of finding the (usually unique) optimal solution.

The same methodology has been adapted to problems involving multiple ob-
jectives by weighting or otherwise defining a single measure of utility. However,
if there are multiple incommensurable objectives, these methods are of little val-
ue. Recently this has been recognized as a more realistic view of many manage-
ment problems. Consequently Multiple Criteria Decision-Making (MCDM) is re-
ceiving widespread attention as a current area of study in operations research
(Roy 1971, Cochrane and Zeleny 1973, Cohon and Marks 1975, Starr and Zeleny
1977).

In trying to extend the concept of optimality to multiple objectives a problem
is encountered—what is meant by minimizing (or maximizing) a vector of objec-
tive functions? Rare indeed is the case where a solution exists where all com-
ponents are simultaneously at their optima. Usually one is faced with tradeoffs
between objectives, the satisfaction of one being decreased or increased at the
expense of others. This has led to the concept of nondominated or Pareto optimal
solutions (Haimes and others 1975). ~

Consider a MCDM problem with L decision variables and v objective func-
tions. Without loss of generality assume that all objective functions are to be
minimized. Define two solutions to the problem by their vectors of decision vari-

ables, X = (x,, x.,...,xpand Y = (y,, ¥, . - . . y,). Let the corresponding
objective function vectors be Fy = {f, (X), fo (XD, ... f. (X)]and F = [f, (1),
fo (D, ..., f, (N for X and ¥, respectively. Solution Y is said to be nondom-

inated (or noninferior, efficient, or Pareto optimal) if the following conditions are
true for any other solution vector X in the decision space:

fi (1) = f; (X) for each objective function j, j = 1,2, ..., v:and

fi (Y) < f; (X) for at least one of the v objective functions. Since Y is always
as good as or better than X in terms of the objective function vector, it is said
to dominate X (Haimes and others 1975).

Regardless of the preference structure associated with the multiple objective
functions, it is clear that the chosen solution must belong to the set of nondom-
inated solutions (if the set is not empty). Such a solution is labeled the best
compromise solution since it usually involves a compromise among the extrem-
izations of the multiple objective functions (Cohon 1978). This best compromise
solution can be selected from the nondominated set only if a particular preference
structure is specified.

Many techniques and procedures have been suggested for locating the non-
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dominated set and/or best compromise solution. Cohon (1978) and Cohon and
Marks (1973) classify all multiobjective techniques as: (a) generating procedures,
(b) iterative procedures where the preference structure is elucidated in a stepwise
process, and (¢) noniterative procedures where the preference structure is pre-
specified. '

The generating procedures require identification of the set of all nondominated
solutions. Specific techniques within this class of procedures are methods based
on weights (Geoffrion 1968). the multicriteria simplex (Zeleny 1974), the con-
straint method (Haimes 1973) and the adaptive search method (Beeson and Meisel
1971).

[terative procedures explore the solution space incorporating the preference
structure given at each step. Examples of iterative methods are the step method
(Benayoun and others 1971), the interactive technique of Dyer (1972), and the
contracting cone method (Steuer 1978).

Noniterative procedures refer to those where the preference structure is pre-
specified prior to initiating the search for the best compromise solution. Examples
of techniques within this class of procedures are utility theory (Kenney and Raiffa
1976), goal programming (Ignizio 1976), and the surrogate worth tradeoff method
(Haimes and Hall 1974).

In this paper, a goal programming approach is employed to reach a best com-
promise solution. Special care is taken to insure that this solution is nondomi-
nated—something which goal programming in general does not guarantee (Cohon
1978, Dyer and others 1979).

SOLVING THE MULTIVARIATE SRS PROBLEM

Using eqs 2 and 3 and following Cochran (1963) one can derive for the univariate
case the minimum cost allocation for fixed precision,

m = WS > W,‘S,,c,,%> / [c,,%(V()?) +NT S W,,S,ﬁ)} @)

h=1 h=1

and the maximum precision allocation for fixed cost,

3 W,.§,,c,,é)]. 5)

h=1

n, = (C — CY)W,S,/ [Cn%(

Early approaches to the multivariate case involved compromises among the
optimal allocations (as given by eq 3) for each variate. Cochran (1963) and Ghosh
(1958) suggested averaging the optimal allocations with respect to each variable.
This implicitly leads to an equal weighting of all variates. Dalenius (1953), Chat-
terjee {1967), and Hartley (1965) utilized loss function approaches with equal or
differential weights assigned to the different variables.

The above approaches reduce the multiple objective problem to one with a
single optimality criterion through assumptions about the relative importance of
the precision of each estimate. With these one-step optimization solutions the
allocation of sampling resources is a direct function of the weights assumed. The
weakness of these methods is that no procedure for setting the weights has been
developed. Further, such a method cannot be developed unless a specific pref-
erence structure or loss function is assumed.

Another extension of the univariate case is to minimize the determinant of the
covariance matrix of the variate means as first suggested by Ghosh (1958). Ar-
vanitis and Afonja (1971) expressed this determinant as a function of the n,’s for
the bivariate and trivariate cases and used nonlinear programming to find the
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optimal allocation. Once again, the precision of each estimate was considered
equally important.

Several mathematical programming approaches have been used to solve the
multiple criteria SRS problem. Consider the general case with L strata for which
v population means are to be estimated.

L
Minimize C=Cy+ >
=1
subject to Vy)=sV, for j=1,2,...,v (6)
Il,,SNh fOI’ h=1,2,...,L.

The first set of constraints specify the upper allowable bounds on the variances
of the estimates while the second set prevent the sample size selected (n,) from
exceeding the stratum size (N,). Recall from eq 2 that V(y;) involves the recip-
rocals of the n,’s and thus the first set of constraints are nonlinear in the decision
variables.

[n an attempt to force this nonlinear problem into a linear programming frame-
work, Nordbotten (1936) altered the objective function and rearranged the second
set of constraints to obtain the following SRS prohlem where the reciprocals of
the n,’s become the decision variables,

L
Minimize C=Cy+ > clny
h=1
subject to V)=V, for j=1,2,...,v @)
Nh*l_’lh—lso fOl' h s 1,2,. .. ,L.

This formulation is of questionable utility because total cost decreases as the
number of samples taken in a stratum increases.

Before using the general SRS problem formulated in eq 6, the question of its
feasibility must be addressed. Because of the convex objective function (in the
reciprocals of the n,’s), an optimum solution exists if it can be shown that a
solution exists (Kokan 1963). Kokan and Khan (1967) have proved the existence
and uniqueness of such a solution to eq 6. Thus, the feasibility of eq 6 is assured.

The general SRS problem formulated in eq 6 was also solved by Chatterjee
(1968) using an undescribed algorithm. Since the Vs were arbitrary, a linear
interpolation of a Taylor series expansion of the objective (cost) function about
the V;’s was used to find approximate costs for alternative sets of precision levels.
Thus a neighborhood of the decision space was explored (approximately) without
solving more than one such problem.

Hartley (1965) suggested that linear programming be used to solve an approx-
imation to eq 6 in which the cost function was replaced with a piecewise linear
approximation. This was possible because the objective function was separable
permitting solution by separable programming (Charnes and Lemke 1954).

The main drawback with mathematical programming approaches to the SRS
problem is that there is no assurance that the optimal allocation will be nondom-
inated. In fact, for certain values of the V;’s the formulated problem may have
no feasible solution. Conceptually there is a lack of consistency in the treatment
of the evaluative criteria; costs are minimized while the variances of the estimates
are constrained by fixed upper bounds.

Fortunately, these methods can be easily adapted to generating the entire non-
dominated solution set by parametrically varying the objective function weights
or constraint levels. Though each such formulation can be solved by convex
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programming techniques (Hazard and Promnitz 1974), the cost in computing time
can make explorations of the solution space prohibitively expensive. Of course
one could simply calculate precision and cost for all permutations of sample sizes
but again this can be quite expensive and does not point towards any particular
solution as the best compromise.

Only Folks and Antle (1965) have considered the SRS problem from the Pareto
optimality point of view. They simplified the problem slightly by assuming that
sampling costs were the same for each stratum. Then, for a fixed total sample
size of n, the complete set of nondominated allocations for the SRS problem is
generated by

m = [Non( 3 ws2)' | /] S M PREAN ®)

h=1

where the \;’s are arbitrary weighting constants such that
Sh=1 and ;=0 for j=1,2,...,v. ©)
st

Unfortunately, no technique for finding a best compromise solution within the
nondominated set was presented.

Clearly, any allocation of the #,’s must be nondominated unless some of the
cost coefficients (c,) or stratum variances (§,%) are zero. By eqs 2 and 3, any
change in an n, changes both the precision of every estimator and the total cost
unless one of the above degeneracies occurs. Thus, there is usually a tradeoff
between precision and cost.

APPLYING GOAL PROGRAMMING TO THE SRS PROBLEM

Goal programming is a variation of linear programming which allows the incor-
poration of multiple objectives. This is accomplished by setting goals or attain-
ment levels for each objective and then minimizing the weighted sum of deviations
from these goals. In linear programming only one criterion is used in the objective
function with the rest included as constraints. However, in goal programming,
all of the evaluative criteria can contribute to the objective function. Each ob-
jective is assigned either: (a) a preemptive priority factor which is an ordinal
indication of its relative importance (Lee 1972) or (b) a cardinal weight which
indicates its importance. In the latter case, goal programming essentially aggre-
gates the multiple objectives into a single objective function.

In the former case minimization is carried out sequentially, first on the weighted
deviations of the highest priority level and then down through lower priority
levels. In this manner no sacrifice in goal attainment is made at the expense of
a higher priority objective.

Relative weights assigned to deviational variables on the same priority level
are implicitly the tradeoffs between the different objectives that the decision-
maker accepts given the optimum solution. For preemptive priority factors the
decisionmaker’s tradeoff ratios for objectives on different priority levels are in-
finite. That is, the decisionmaker would refuse any finite improvement in the
attainment of a lower priority goal if it required any loss in the attainment of a
higher ranked goal. Ordinal ranking of goals simply substitutes infinite relative
weights for the problem of estimating finite tradeoffs. Thus, with conflicting goals
assigned to multiple priority levels, one expects the attainment of lower ranked
goals to be poor.

In applying goal programming to the SRS problem, preemptive priority factors
were not used. Ordinal rankings are inappropriate for this problem because: (a)
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preemptive goal programming does not guarantee selection of a nondominated
solution (Dyer and others 1979, Field and others 1980) and (b) within the non-
dominated set, tradeoffs among the evaluative criteria (precision and cost) should
be finite. The decisionmaker will always, where possible, be willing to reduce
sample sizes slightly for a sufficiently large savings in costs or increase them
slightly for sufficiently large gains in precision.

The SRS allocation problem can be formulated in a goal programming frame-
work as shown below,

Minimize Z = wd,t + weed,” + i (wnd;t + wyied;™)
=1
subject to V) +di-—di*=V, for j=1,2,...,v (10)

L

2 Chnh. +dc_ ;dc+ — C - C()

h=1

2<smn,<N, for h=1,2,...,L.

The goals for the variances are the V,’s and C is the cost goal. The d,’s are the
deviational variables for the cost goal and the d;’s are the deviational variables
for the precision goals. The w,’s and the w;’s are the corresponding weights in
the objective function for these deviational variables. The last set of constraints
insures that the sample sizes in each stratum allow the calculation of a stratum
sample variance while not exceeding the stratum size.

Since C, is fixed, it can be removed from the optimization and added back to
variable costs after the solution is obtained. To further simplify the problem, all
of the goals (V;’s and C) can be set to zero (eliminating the negative deviational
variables) as these are the ‘‘ideal’” solutions (Zeleny 1976). Lastly, by replacing
the n,’s with their reciprocals (labelled x,) and filling in the equation for the
V(y;)’s, the problem becomes,

v
Minimize Z =w.d* + 2 wid;t
=

' L L .
SubjeCt to E W,,ZSZMX,, - Z W,,zsz,-,,/N,, - j+ =0
h=1 h=1
for j=1,2,...,v (11)

L
2 Ch/xh e dc+ =0

h=1

UN, =x, <% for h=1,2,...,L.

Since the problem still incorporates a nonlinear cost constraint, the most impor-
tant question is whether or not it can be solved.

A general assumption of procedures for solving nonlinear programming prob-
lems is that the feasible set be convex. The requirement for convexity is that
given any two feasible solutions, X, = (x,,, X2, . . . , x;z) and X, = (x4, Xy,

. » Xa), all solutions of the form A X, + A\ X, (with A\, + Ay = 1, A, Ao > 0)
must also belong to the feasible set. Geometrically this means that all points on
a straight line between any two feasible solutions must also be feasible.

To see if this property holds for eq 11, consider the simplest possible case,
simple random sampling for a single attribute (L = v = 1). The problem reduces
to,
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W, %,

FiGure 1. Demonstration of the nonconvex feasible set for the problem defined in eq 12.

Minimize Z=wd.*t +w,d*
subject to WS x, — W2S?/N, —-d,t =0 (12)
c/x, —d,*=0

I/N,<sx,s V.

As Figure 1 shows, the feasible region for eq 12 is a curvilinear segment
which is not convex. Therefore the problem is difficult if not impossible to
solve (Wagner 1975).

Fortunately, the cost constraint is separable (each decision variable occurs
in a separate additive term) so that b-1 linear segments with b break points
can be used to approximate it as shown in Figure 2. In each stratum, x, is re-

b b
placed by 2 Mo/ Xy With 2 Arm = 1 and all X’s nonnegative. The A’s are un-
m=1 m=1 .
known weights for the linear combinations of the X’s. These X’s are con-
stants such that X,, = l/x, evaluated at the m'™ breakpoint for the linear
approximation to the cost function in the A®™ stratum. In order to restrict the
solution to one of the linear segments shown in Figure 2, no more than two
of the A\’s for each stratum may be greater than zero, and if two are, they must
be adjacent. Temporarily ignoring this last restriction, the approximation pro-
duces the following problem,

Minimize Z =wd.*t+ :2 wid;*
j=1
L l/ L
SUbjeCt to z WI12S2JPL< E) )\hm/Xhm> - 2 thsz.ih/NIl - d.i+ =0
h=1 m=l\ h=1
for j=1,2,...,v (13)

i)\thhm> - d('— =0

m=|\

L
Z Ch(
h=1
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X

FIGURE 2. Approximation of each term of the cost functional by linear (dashed) segments.

I/Nh = (Z )\hm/Xh,m) SR%

m=1

b
S M =1 for h=1,2,...,L.

m=1

Note that the x,’s in the precision and sample size constraints are all replaced
with the appropriate linear approximations as well. This approximation is linear
in the A’s and d’s and can be solved by linear programming if the restriction
about adjacent weights (\’s) is ignored. The property of adjacent weights insures
that this restriction will, in fact, be forced upon the solution by the solution
procedure (Wagner 1975). Because of this property, the feasible set will have a
linear cost constraint and thus will be convex.

As the number of linear segments increases (at least in the neighborhood of the
optimal solution), the optimum for the approximated problem (eq 13) approaches
the true optimum for the original problem (eq 11) (Simmons 1975). Increasing the
number of segments enlarges the number of decision variables and increases the
number of iterations needed to find the solution. One approach is to lteranvely
solve the problem formmg a finer grid of segments until a stable optimum is
found. Another approach is to retain the same number of segments for each
iteration but to shift the segments to form a finer approximation in the neighbor-
hood of the optimum. For the application discussed in the next section, the latter
method was adopted.

VoLUME 27, NuMBER 1, 1981/ 155



TABLE 1. Summary of stratum codes and stand structure.

Stratum code Stand structure

Commercial forest land

21 Softwoods, not ready for harvest, sparsely stocked

22 Softwoods, not ready for harvest, adequately stocked

23 Softwoods, not ready for harvest, overstocked

24 Softwoods, commercial size, adequate regeneration

25 Softwoods, commercial size, understory overstocked

26 Softwoods, commercial size, understory not adequately stocked
27 Softwoods, seedlings or saplings

31 Cottonwood and aspen

Noncommercial forest land

41 Softwoods, poor site, some volume
42 Softwoods, poor site, little volume
43 Hardwoods, poor site, little volume
44 Pinyon and juniper

60 Nonforest, land

92 Nonforest, water

APPLICATION OF THE GOAL PROGRAMMING METHOD TO FOREST INVENTORY

The goal programming formulation was tested on data from a recent U.S. Forest
Service Inventory of three counties in northern New Mexico.? The basic sampling
design was a stratified double sample using stratum weights estimated from aerial
photographs.

The primary sample consisted of one-acre photo points from a systematic grid
with a 1 percent sampling intensity. Each photo point was classified by stand
type into one of the fourteen strata defined in Table 1 and the proportion of photo
points belonging to each stratum was used as an estimate of the stratum weight,
Wh -3

The secondary sample consisted of ground points taken at a subset of the photo
points. At each ground location a ten-point cluster of prism points was estab-
lished. The average cost for each ground location was $130. The ground obser-
vations indicated that stand type classifications based on aerial photography were
in error for many points.*

The Forest Service technique for determining sample sizes assumes propor-
tional sampling across strata with the total sample size (n) fixed by an allowable
standard error of the estimate. The proportional allocations of sampling effort
were computed with respect to estimates of: (a) growing stock volume, (b) area
of commercial forest land (CFL), and (c) area of noncommercial forest land
(NCFL). The largest of the three sample sizes for a stratum was selected as the
final allocation for that stratum. This procedure is a reasonable compromise so-

2 Ibid.
? Since estimates of stratum weights were used, the expression for the V(y) used in eq 13 was
replaced by the following equation due to Bickford and others (1963),

I
V) = VY = DI S Ny = DN,Slmy + NG = 5. (149
h=1 \

4 Mitchell, B. 1978. Optimization of multivariate stratified random sampling designs for forest
inventory. Unpublished MS thesis, Univ Washington, Seattle, Wash. 64 p.
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lution but it ignores other characteristics of interest and differences in sampling
costs and variation among strata.

To illustrate the use of the goal programming method, the following character-
istics were arbitrarily chosen for estimation from the dozens of variables mea-
sured at each ground point: (a) average potential yield, (b) growth, (c) mortality,
(d) cull volume, and (e) growing stock volume. Characteristics (a)—(¢c) were mea-
sured in CF/A/Yr whereas characteristics (d) and (e) were expressed in CF/A.

For each characteristic the sample means and variances were estimated using
the data from the Forest Service inventory. For lack of better information on
costs, it was arbitrarily assumed that each ground location cost $200 in CFL and
$50 in NCFL. (Nonforest land points were not visited on the ground.)

The approximation to eq 13 (using 10 breakpoints) for 14 strata was

b
Minimize Z =wd.t + > wpd;*
=

subject to

14 10 )

(v = 014 55 N = DN ( 3 Ml ) + NalGn -~ 5} - dr =0
h=1 m=1

for j=1,2,...,5 (15)

14 1)
2 CIL( E A’LHX’LIH) - dc+ =0
h=1

m=1

1/Nh = 120 )\hm/Xhm = %

m=1

10
N Mm=1 for Ah=12...,14
m=1

This problem was then re-solved with the linear segments shifted for a finer
approximation in the neighborhood of the optimum, until the relative difference
between the approximated costs and the true costs of the generated solution were
less than S percent. The use of nine segments (ten breakpoints such as shown in
Fig. 2) was found to yield a good compromise between problem size and the
number of iterations required for a good approximation to the solution.

As an example, results for one of the three counties—Sante Fe—are presented.
Table 2 lists the deviational weights and the resulting coefficients of variation
(CV) of each characteristic for eight possible solutions to the SRS problem (eq
15). The corresponding sampling allocations determined by these sets of weights
are displayed in Table 3. Although eq 15 is stated in terms of V(¥;), the information
on precision of the estimates is presented in terms of CV to aid the decisionmaker
in comparing the achievement of precision goals within any one solution. Unlike
the variance, the CV is scale free. Since stratum 92 was less than two sampling
units in size (N, = 1.92), the lower constraint on n, for this stratum was reduced
from 2 to 1 to keep the problem feasible.

The starting point for generating sampling allocations was to set each element
of the vector of deviational weights equal to one. This set of weights resulted in
Plan A, which took the minimal sample size in each stratum yielding the minimum
cost plan. The opposite extreme was Plan B which took maximum sample sizes
in each stratum that had nonzero tree volume (strata 21-27 and 41). Plan B was
the maximum precision solution as the maximum sample sizes minimized the
CV'’s for all characteristics. Even with complete enumeration, the CV’s (and thus
the variances) for each characteristic do not reduce to zero for Plan B because
the variances as given in eq 14 contain a positive term due to the estimation of
the W,’s.
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Plan C is a compromise between the cost extremes of A and B, still keeping
all deviational weights for precision goals equal to one.

Plans D, E, and F illustrate how changes in the weights for the precision
objectives shift the sampling allocations among the strata to adjust CV's. In these
plans, the weights for mortality, cull volume, and growing stock volume were
increased to find solutions with lower CV's for these characteristics. The resulting
solutions, however, reduced the CV’s of all the characteristics, reflecting the
correlations within strata among these characteristics. Plan G was very similar
in cost and precision to plans E and F but was generated by a radically different
set of weights. This points out how correlations among characteristics can limit
the effects of major shifts in deviational weights on the resulting sampling allo-
cation. It also suggests that if there are groups of strongly correlated character-
istics to be estimated by an SRS design, one representative characteristic should
be selected from each group and used when exploring the solution space. The
CV'’s of the other characteristics in a group can be assumed to be approximately
proportional to that of the representative variable for a given allocation.

The actual Forest Service plan (Plan H) allocates considerably more sampling
effort to strata with low and zero tree volumes in order to meet constraints on
the allowable error for area estimates. Since these goals differ from those incor-
porated in the case study, Plan H is not comparable to Plans A-G. .

A goal programming approach can be adapted to search for a best compromise
solution for many sampling designs, only requiring that any nonlinear cost or
variance functions be separable in the decision variables. For example, the com-
bined problem of choosing the number of photo points in the primary sample as
well as in the secondary sample would fit into this framework. Two-stage sampling
designs would also be amenable though the number of nonlinearities in the prob-
lem increases. For very complex designs, the size of the linearized problem may
be so large that the costs of exploring the solution space in this manner could be
prohibitively expensive.

The simplest extension of this method would be to modify the linear cost
function by adding terms of the form c,/x,"* as suggested by Sukhatme (1954).
This would take into account travel costs between ground sample points. Unfor-
tunately, cost functions are very difficult to estimate adequately as standardiza-
tion of methodology and operating conditions are lacking.

DiscussioN

The separable goal programming approach offers-a number of advantages over
previous techniques for solving the multivariate SRS allocation problem. Al-
though it utilizes highly efficient LP solution algorithms, it always produces a
nondominated solution since the goal attainment levels are set as high as possible
(ideally). Conceptually it is appealing because all decision criteria are used in an
identical manner, without the somewhat artificial division into objective function
and constraints. Lastly, the approach does not presuppose that the decisionmak-
er's preference structure is known before any solutions are presented. Instead,
it allows one to search the solution space in a directed manner towards an ac-
ceptable best compromise solution.

The shortcomings of the approach, shared by all optimization techniques for
the problem, include assumptions of perfect knowledge of stratum means and
variances. In practice, these quantities must be estimated, either from a previous
inventory if the same classification of strata is being used, or possibly from aerial
photos of the primary sample. Further, it is difficult to estimate the cost functions
needed to implement the solution procedure. Consequently, the utility of the
solutions to the SRS problem generated by the goal programming approach will
be limited by the accuracy of these estimates.
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